Search results for "Hardware in the Loop"
showing 3 items of 3 documents
Underwater Wireless Communications for Cooperative Robotics with UWSim-NET
2019
The increasing number of autonomous underwater vehicles (AUVs) cooperating in underwater operations has motivated the use of wireless communications. Their modeling can minimize the impact of their limited performance in real-time robotic interventions. However, robotic frameworks hardly ever consider the communications, and network simulators are not suitable for HIL experiments. In this work, the UWSim-NET is presented, an open source tool to simulate the impact of communications in underwater robotics. It gathers the benefits of NS3 in modeling communication networks with those of the underwater robot simulator (UWSim) and the robot operating system (ROS) in modeling robotic systems. Thi…
DC Grids for Supporting AC Power System during Failure Events: Experimental Testing of a Urban Case Study
2022
AC power systems and their devices can be subjected to different failure events due to thermal, environmental, and aging phenomena. In this context, DC grids intervention could mitigate customers black-out by adequately controlling their internal resources (renewable generators and storage systems). In this paper, failure events concerning HV/MV transformer are considered. Possible actions to support the AC grid to avoid interruption in load areas are analyzed and experimentally validated. Tests campaigns are carried out taking advantage of a research nanogrid infrastructure available at ENEA Centre of Portici. It consists of indoor equipment able to emulate actual generation, load and stor…
Simulation and Test of UAV Tasks With Resource-Constrained Hardware in the Loop
2021
Simulations are indispensable to reduce costs and risks when developing and testing algorithms for unmanned aerial vehicles (UAV) especially for applications in high risk scenarios like search and rescue (SAR) operations and post-disaster damage assessment. Many UAV applications require real-time tasks for which the timeliness of computations is fundamental. However, standard simulation tools are not guaranteed to run in sync with real-time events, leading to unreliable assessments of the ability of the target hardware to perform specific tasks. In this work we present a simulation and test system able to run UAV tasks on resource-constrained target hardware possibly adopted in these applic…